These applications have been tested by the ibidi R&D team or by our customers.
Endothelial Barriers Without Artificial Membrane
The μ-Slide I Luer 3D allows for creating an endothelial barrier without the need of an artificial filter membrane. Endothelial cells can be seeded on a suitable gel matrix, such as Collagen Type I, Rat Tail. After connecting the slide to a pump and applying defined shear stress, an in vivo-like endothelial barrier assay is created. This model simulates blood vessels on a soft ECM matrix instead of using a hard filter membrane.
Read our Application Note 60 for a specific protocol with HUVEC, Collagen Type I and the ibidi Pump System.


Phase contrast microscopy of HUVEC after culturing them under flow at 10 dyn/cm2 for 2 days (left) and 5 days (right) on a Collagen Type I rat tail (2 mg/ml). Note the cobblestone-like cell morphology after 5 days of culture under flow. 20x objective.

Fluorescence microscopy of HUVEC after culturing them under flow at 10 dyn/cm2 for 5 days on a Collagen Type I rat tail (2 mg/ml). Immunostaining of alpha-tubulin (red); the F-actin cytoskeleton was stained using phalloidin (green). Nuclei are stained with DAPI (blue). 10x objective.
Cell Polarization
A cell monolayer is seeded on a hydrogel and defined shear stress can be applied. Being compatible with all pipettable gel matrices, the μ-Slide I Luer 3D allows a wide variety of polarization studies (e.g., with epithelial cells).

Polarized cells on a gel matrix, cultured under defined shear stress.
Potential Use
The following examples illustrate further potential product uses. ibidi has not yet tested these applications in-house, therefore we cannot provide specific protocols. However, from a technical point of view, these applications should be possible.
3D Cell and Tissue Assays
Several three-dimensional cell culture experiments can be performed using the μ-Slide I Luer 3D. For example, single cells or cell clusters can be seeded in the hydrogel matrix. Optionally, defined shear stress can be applied to a cell monolayer on top.

Spheroids (left) or single cells (right) embedded into a 3D gel matrix.
Rolling, Adhesion, and Transmigration Assays
For physiological rolling, adhesion, and transmigration approaches, the endothelial cell layer can be supplied with suspension cells on the luminal side and target cancer cells on the basal side. Optionally, defined shear stress can be applied.

Co-culture of an endothelial cell layer and suspension cells for rolling and adhesion assays (left),
optionally with additional target cancer cells inside the extracellular matrix (right).
Decison Guide: ibidi Solutions for Two-Compartment and Membrane Assays

Slide principle

Which Slide Should I Use for My Application?
